Logarithms

Jelani Nelson
UC Berkeley

July 17, 2023

JamCoders 2023
"Logarithm" is the opposite of "exponential"
"Logarithm" is the opposite of "exponential"

- $10^{3}=1000$
$\log _{10}(1000)=3$
"the logarithm base 10 of 1000 is 3 "
$>2^{5}=32$
$\log _{2}(32)=5$
"the logarithm base 2 of 32 is 5 "

$$
\begin{aligned}
& \log _{10}(1)=1 \\
& \log _{10}(10)=2 \\
& \log _{10}(100)=3 \\
& \log _{10}(1,000)=4 \\
& \log _{10}(10,000)=5 \\
& \log _{10}(100,000)=6 \\
& \log _{10}(1,000,000)=7 \\
& \log _{10}(10,000,000)=8 \\
& \log _{10}(100,000,000)=9 \\
& \log _{10}(1,000,000,000)=10
\end{aligned}
$$

When the base is 10 , and the argument x is a power of $10, \log _{10}(x)$ counts number of zeroes.

$f(x)=$ number of recorded COVID-19 cases on day x source: 3Blue1Brown (https: //www.youtube.com/watch?v=cEvgcoyzves)

$g(x)=\log _{10}$ (number of recorded COVID-19 cases on day x)
source: 3Blue1Brown (https: //www.youtube.com/watch?v=cEvgcoyzvea)

On what day do we expect to cross 1 million recorded cases? source: 3Blue1Brown (https: //www.youtube.com/watch?v=cEvgcoyzve4)
$\times 10$ every 16 days \Longrightarrow what is the daily rate of increase? ...
$\times 10$ every 16 days \Longrightarrow what is the daily rate of increase? ...

$$
\begin{aligned}
& r^{16}=10 \\
& \Longrightarrow r=10^{1 / 16}=1.15478198469 \ldots
\end{aligned}
$$

$\times 10$ every 16 days \Longrightarrow what is the daily rate of increase? ...
$>r^{16}=10$

$$
\Longrightarrow r=10^{1 / 16}=1.15478198469 \ldots
$$

Starting from day 1 , how long before 1 million cases?

$$
\begin{gathered}
1.1548^{x}=1,000,000 \text { means } x=\log _{1.1548}(1,000,000) \text { days } \\
\text { (96 days) }
\end{gathered}
$$

Product rule for logarithms

$$
\log _{a}(b \cdot c)=?
$$

Product rule for logarithms

$$
\log _{a}(b \cdot c)=?
$$

Go back to examples:

$$
\begin{aligned}
\log _{10}(\underbrace{100}_{2} \cdot \underbrace{1000}_{3}) & =\log _{10}(100,000) \\
& =5
\end{aligned}
$$

Product rule for logarithms

$$
\log _{a}(b \cdot c)=?
$$

Go back to examples:

$$
\begin{aligned}
\log _{10}(\underbrace{100}_{2} \cdot \underbrace{1000}_{3}) & =\log _{10}(100,000) \\
& =5
\end{aligned}
$$

Guess: $\log _{a}(b \cdot c)=\log _{a}(b)+\log _{a}(c)$

Product rule for logarithms

$$
\log _{a}(b \cdot c)=?
$$

Go back to examples:

$$
\begin{aligned}
\log _{10}(\underbrace{100}_{2} \cdot \underbrace{1000}_{3}) & =\log _{10}(100,000) \\
& =5
\end{aligned}
$$

Guess: $\log _{a}(b \cdot c)=\log _{a}(b)+\log _{a}(c)$
Indeed, $a^{x}=b, a^{y}=c$ means $a^{x+y}=b \cdot c$
$\left(x\right.$ is $\log _{a}(b)$ and y is $\log _{a}(c)$)

Exponent rule for logarithms

$$
\log _{a}\left(b^{n}\right)=?
$$

Exponent rule for logarithms

$$
\log _{a}\left(b^{n}\right)=?
$$

Go back to examples:

$$
\begin{aligned}
\log _{10}\left(100^{3}\right) & =\log _{10}(\underbrace{100}_{2} \cdot \underbrace{100}_{2} \cdot \underbrace{100}_{2}) \\
& =\log _{10}(1,000,000) \\
& =6(\text { which is } 3 \times 2)
\end{aligned}
$$

Exponent rule for logarithms

$$
\log _{a}\left(b^{n}\right)=?
$$

Go back to examples:

$$
\begin{aligned}
\log _{10}\left(100^{3}\right) & =\log _{10}(\underbrace{100}_{2} \cdot \underbrace{100}_{2} \cdot \underbrace{100}_{2}) \\
& =\log _{10}(1,000,000) \\
& =6(\text { which is } 3 \times 2)
\end{aligned}
$$

Guess: $\log _{a}\left(b^{n}\right)=n \cdot \log _{a}(b)$

Exponent rule for logarithms

$$
\log _{a}\left(b^{n}\right)=?
$$

Go back to examples:

$$
\begin{aligned}
\log _{10}\left(100^{3}\right) & =\log _{10}(\underbrace{100}_{2} \cdot \underbrace{100}_{2} \cdot \underbrace{100}_{2}) \\
& =\log _{10}(1,000,000) \\
& =6(\text { which is } 3 \times 2)
\end{aligned}
$$

Guess: $\log _{a}\left(b^{n}\right)=n \cdot \log _{a}(b)$
Indeed, if $a^{x}=b$ then $b^{n}=\left(a^{x}\right)^{n}=a^{n \cdot x}$
$\left(x\right.$ is $\left.\log _{a}(b)\right)$

Change of base for logarithms

What is $\log _{b}(a)$ in terms of $\log _{a}(b)$?

Change of base for logarithms

What is $\log _{b}(a)$ in terms of $\log _{a}(b)$?

Go back to examples:

$$
\log _{1000}(10)=1 / 3
$$

since $\sqrt[3]{1000}=10$

Change of base for logarithms

What is $\log _{b}(a)$ in terms of $\log _{a}(b)$?

Go back to examples:

$$
\log _{1000}(10)=1 / 3
$$

since $\sqrt[3]{1000}=10$
Guess: $\log _{b}(a)=1 / \log _{a}(b)$

Change of base for logarithms

What is $\log _{b}(a)$ in terms of $\log _{a}(b)$?

Go back to examples:

$$
\log _{1000}(10)=1 / 3
$$

since $\sqrt[3]{1000}=10$
Guess: $\log _{b}(a)=1 / \log _{a}(b)$
Indeed, $a^{x}=b$ means $b^{1 / x}=a$

