Logarithms

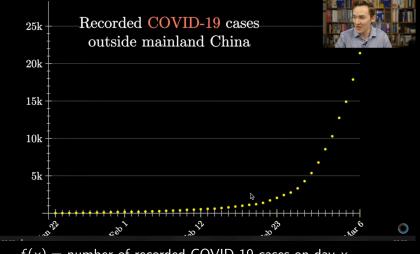
Jelani Nelson UC Berkeley

July 17, 2023

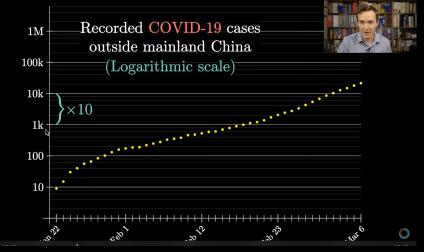
JamCoders 2023

"Logarithm" is the opposite of "exponential"

"Logarithm" is the opposite of "exponential"

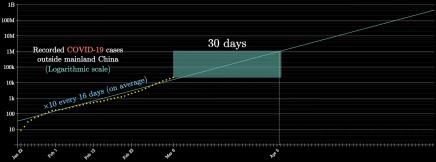

$$\triangleright$$
 2⁵ = 32

 $\log_2(32) = 5$


"the logarithm base 2 of 32 is 5"

 $\log_{10}(1) = 1$ $\log_{10}(10) = 2$ $\log_{10}(100) = 3$ $\log_{10}(1,000) = 4$ $\log_{10}(10,000) = 5$ $\log_{10}(100,000) = 6$ $\log_{10}(1,000,000) = 7$ $\log_{10}(10,000,000) = 8$ $\log_{10}(100,000,000) = 9$ $\log_{10}(1,000,000,000) = 10$

When the base is 10, and the argument x is a power of 10, $\log_{10}(x)$ counts number of zeroes.



f(x) = number of recorded COVID-19 cases on day x source: 3Blue1Brown (https://www.youtube.com/watch?v=cEvgcoyZvB4)

g(x) = log₁₀(number of recorded COVID-19 cases on day x)
source: 3Blue1Brown (https://www.youtube.com/watch?v=cEvgcoyZvB4)

On what day do we expect to cross 1 million recorded cases? source: 3Blue1Brown (https://www.youtube.com/watch?v=cEvgcoyZvB4) $\times 10$ every 16 days \Longrightarrow what is the daily rate of increase? \ldots

 $\times 10$ every 16 days \Longrightarrow what is the daily rate of increase? \ldots

►
$$r^{16} = 10$$

 $\implies r = 10^{1/16} = 1.15478198469...$

 $\times 10$ every 16 days \Longrightarrow what is the daily rate of increase? \ldots

►
$$r^{16} = 10$$

 $\implies r = 10^{1/16} = 1.15478198469...$

Starting from day 1, how long before 1 million cases?

1.1548^x = 1,000,000 means $x = \log_{1.1548}(1,000,000)$ days (96 days)

$$\log_a(b \cdot c) = ?$$

$$\log_a(b \cdot c) = ?$$

Go back to examples:

$$\log_{10}(\underbrace{100}_{2} \cdot \underbrace{1000}_{3}) = \log_{10}(100,000) = 5$$

$$\log_a(b \cdot c) = ?$$

Go back to examples:

$$\log_{10}(\underbrace{100}_{2} \cdot \underbrace{1000}_{3}) = \log_{10}(100,000)$$

= 5
Guess: $\log_{a}(b \cdot c) = \log_{a}(b) + \log_{a}(c)$

$$\log_a(b \cdot c) = ?$$

Go back to examples:

$$\log_{10}(\underbrace{100}_{2} \cdot \underbrace{1000}_{3}) = \log_{10}(100,000)$$

= 5
Guess: $\log_{a}(b \cdot c) = \log_{a}(b) + \log_{a}(c)$

Indeed, $a^x = b, a^y = c$ means $a^{x+y} = b \cdot c$ (x is $\log_a(b)$ and y is $\log_a(c)$)

$$\log_a(b^n) = ?$$

$$\log_a(b^n) = ?$$

Go back to examples:

$$\log_{10}(100^3) = \log_{10}(\underbrace{100}_2 \cdot \underbrace{100}_2 \cdot \underbrace{100}_2)$$

= log_{10}(1,000,000)
= 6 (which is 3 × 2)

$$\log_a(b^n) = ?$$

Go back to examples:

$$\log_{10}(100^3) = \log_{10}(\underbrace{100}_2 \cdot \underbrace{100}_2 \cdot \underbrace{100}_2)$$

= $\log_{10}(1,000,000)$
= 6 (which is 3 × 2)
Guess: $\log_2(b^n) = n \cdot \log_2(b)$

$$\log_a(b^n) = ?$$

Go back to examples:

Gι

$$\log_{10}(100^3) = \log_{10}(\underbrace{100}_2 \cdot \underbrace{100}_2 \cdot \underbrace{100}_2)$$
$$= \log_{10}(1,000,000)$$
$$= 6 \text{ (which is } 3 \times 2)$$
ess: $\log_2(b^n) = n \cdot \log_2(b)$

Indeed, if $a^{x} = b$ then $b^{n} = (a^{x})^{n} = a^{n \cdot x}$ (x is $\log_{a}(b)$)

What is $\log_b(a)$ in terms of $\log_a(b)$?

What is $\log_b(a)$ in terms of $\log_a(b)$?

Go back to examples:

 $\log_{1000}(10) = 1/3$

since $\sqrt[3]{1000} = 10$

What is $\log_b(a)$ in terms of $\log_a(b)$?

Go back to examples:

 $\log_{1000}(10) = 1/3$

since $\sqrt[3]{1000} = 10$

Guess: $\log_b(a) = 1/\log_a(b)$

What is $\log_b(a)$ in terms of $\log_a(b)$?

Go back to examples:

 $\log_{1000}(10) = 1/3$

since $\sqrt[3]{1000} = 10$

Guess: $\log_b(a) = 1/\log_a(b)$

Indeed, $a^x = b$ means $b^{1/x} = a$