

тснир

ASHK

JAMCODERS

In JamCoders, so far: Software

Today: Hardware!

Electronic Numerical Integrator and Computer (ENIAC)

- Invented 1946
- University of Pennsylvania (U Penn)

ENIAC: 5000 calculations per second

M2Ultra: 31.6 trillion operations per second

Who is Grace Hopper?

Grace Hopper: Born 1906

Early computer scientist

Navy admiral

Known for:

- Inventing one of the first linkers
- Theory of machine-independent programming languages

What is debugging?

A bug died inside Grace Hopper's computer and impeded the relay operations

The term "debugging" was born

929/9 andan started 0800 1.2700 1000 stopped const 13 0 ((032) MP - MC THE 15 (3) 4.615925059(-2) (033) PRO 2 2.130476415 2.130676415 -2 m 033 failed special speed test 10,000 1700 Started osine Tape (Sine check) Started Mult + Adder Test 1525 Relay #70 Panel F (moth) in relay. 1545 145100 andagent started. 1700 cloud dom.

Debugging is still difficult, but luckily doesn't involve real bugs

Today, computers are faster, store more data, and take up less space.

2012 REPRESENT BCA ESTIMATES.

0 section		.text	declare the .text section
1 global		_start	has to be declared for the linker (ld)
2 _start:			entry point for _start
3 mov	edx,	len	"invoke" the len of the message
4 mov	ecx,	msg	"invoke" the message itself
6 mov	ebx,	1	set the file descriptor (fd) to stdout
8 mov	eax,	4	system call for "write"
9 int	0x80		call the kernel
1 mov	eax,	1	system call for "exit"
2 int	0x80		call the kernel
4 section		.data	here you declare the data
5 msg		db "Hello world!", 0xa	the actual message to use
6 len		equ \$ -msg	get the size of the message

- Get data faster.
 - Access to data is limited by distance (speed of light).
 - Multiple tiers of cache on a chip.

- Get data faster.
 - Access to data is limited by distance (speed of light).
 - Multiple tiers of cache on a chip.

Computer	Human Analogy

- Get data faster.
 - Access to data is limited by distance (speed of light).
 - Multiple tiers of cache on a chip.

Computer	Human Analogy
L1 Cache: 1ns	

- Get data faster.
 - Access to data is limited by distance (speed of light).
 - Multiple tiers of cache on a chip.

Computer	Human Analogy
L1 Cache: 1ns	0.25 seconds

- Get data faster.
 - Access to data is limited by distance (speed of light).
 - Multiple tiers of cache on a chip.

Computer	Human Analogy
L1 Cache: 1ns	0.25 seconds (fact just learned)

- Get data faster.
 - Access to data is limited by distance (speed of light).
 - Multiple tiers of cache on a chip.

Computer	Human Analogy
L1 Cache: 1ns	0.25 seconds (fact just learned)
L3 Cache: 16ns	

- Get data faster.
 - Access to data is limited by distance (speed of light).
 - Multiple tiers of cache on a chip.

Computer	Human Analogy
L1 Cache: 1ns	0.25 seconds (fact just learned)
L3 Cache: 16ns	4 seconds (fact from a month ago)

- Get data faster.
 - Access to data is limited by distance (speed of light).
 - Multiple tiers of cache on a chip.

Computer	Human Analogy
L1 Cache: 1ns	0.25 seconds (fact just learned)
L3 Cache: 16ns	4 seconds (fact from a month ago)
RAM: 100ns	

- Get data faster.
 - Access to data is limited by distance (speed of light).
 - Multiple tiers of cache on a chip.

Computer	Human Analogy
L1 Cache: 1ns	0.25 seconds (fact just learned)
L3 Cache: 16ns	4 seconds (fact from a month ago)
RAM: 100ns	25 seconds (look in a book on your desk)

- Get data faster.
 - Access to data is limited by distance (speed of light).
 - Multiple tiers of cache on a chip.

Computer	Human Analogy
L1 Cache: 1ns	0.25 seconds (fact just learned)
L3 Cache: 16ns	4 seconds (fact from a month ago)
RAM: 100ns	25 seconds (look in a book on your desk)
SSD: 100,000ns (100us)	

- Get data faster.
 - Access to data is limited by distance (speed of light).
 - Multiple tiers of cache on a chip.

Computer	Human Analogy
L1 Cache: 1ns	0.25 seconds (fact just learned)
L3 Cache: 16ns	4 seconds (fact from a month ago)
RAM: 100ns	25 seconds (look in a book on your desk)
SSD: 100,000ns (100us)	~7 hours (go to the library today)

- Get data faster.
 - Access to data is limited by distance (speed of light).
 - Multiple tiers of cache on a chip.

Computer	Human Analogy
L1 Cache: 1ns	0.25 seconds (fact just learned)
L3 Cache: 16ns	4 seconds (fact from a month ago)
RAM: 100ns	25 seconds (look in a book on your desk)
SSD: 100,000ns (100us)	~7 hours (go to the library today)
Disk: 10,000,000ns (10,000us, 10ms)	

- Get data faster.
 - Access to data is limited by distance (speed of light).
 - Multiple tiers of cache on a chip.

Computer	Human Analogy
L1 Cache: 1ns	0.25 seconds (fact just learned)
L3 Cache: 16ns	4 seconds (fact from a month ago)
RAM: 100ns	25 seconds (look in a book on your desk)
SSD: 100,000ns (100us)	~7 hours (go to the library today)
Disk: 10,000,000ns (10,000us, 10ms)	~29 days (Jamcoders!)

- Get data faster.
 - Access to data is limited by distance (speed of light).
 - Multiple tiers of cache on a chip.

Computer	Human Analogy
L1 Cache: 1ns	0.25 seconds (fact just learned)
L3 Cache: 16ns	4 seconds (fact from a month ago)
RAM: 100ns	25 seconds (look in a book on your desk)
SSD: 100,000ns (100us)	~7 hours (go to the library today)
Disk: 10,000,000ns (10,000us, 10ms)	~29 days (Jamcoders!)
Network (JAM ↔ NYC): 70,000,000ns (70,000us, 70ms)	

- Get data faster.
 - Access to data is limited by distance (speed of light).
 - Multiple tiers of cache on a chip.

Computer	Human Analogy
L1 Cache: 1ns	0.25 seconds (fact just learned)
L3 Cache: 16ns	4 seconds (fact from a month ago)
RAM: 100ns	25 seconds (look in a book on your desk)
SSD: 100,000ns (100us)	~7 hours (go to the library today)
Disk: 10,000,000ns (10,000us, 10ms)	~29 days (Jamcoders!)
Network (JAM ↔ NYC): 70,000,000ns (70,000us, 70ms)	~202 days (a year of school)

What is voltage?

Electric potential difference per unit charge between two points in a circuit's electric field.

- The battery supplies voltage, causing an energy imbalance to exist between the + and -
- This causes current (electrons or ions) to flow

What is current?

Electrical current is a stream of charged particles, such as electrons or ions, moving through an electrical conductor.

Resistors

Resistors provide resistance to electrical current.

They are often needed to regulate the current and voltage in a circuit.

Ohm's Law

Ohm's Law captures the relationship between:

- Current (I)
- Voltage (V)
- Resistance (R)

V = IR

Arduino Chip

Breadboard

Circuit Components

- Wires
- Resistors
- Capacitors
- Transistors
- Multiplexers
- Switches
- OR, AND, and NOT gates
- The list goes on...

Wires

I know you know what wires are, here are some photos of the ones we're using:

The metal ends enter the breadboard and Arduino pin holes

LED Lightbulbs

Breadboard

Breadboards are used to organize and connect circuit elements.

Are the resistor and the lightbulb connected?

What about now? Is there anything wrong with this connection?

Simple Light Switch Circuit

Let's connect our circuit board to +/- voltage:

Now let's connect the positive voltage to the resistor:

Now let's connect the negative voltage to the lightbulb:

Nice :)

• Open Blink_LED.ino

Arduino chips run code which controls the voltage and current applied via wires into our circuit

• Open LED_buttons.ino

• Open rgb_fade.ino

Now put it together!

Make a circuit that uses TWO buttons to control the colour of an RGB LED.

• Open rbg_buttons.ino