JamCoders: Week 4 Day 1B

Graph Traversals: BFS Review

Welcome! We’ll start at 3:13PM!

DFS

0
Depth-First Search is a way to explore \
connected nodes in a graph.
2

DFS goes deep before wide: fully

1
explore one path before trying any
others.

Analogy: In a cave with lots of tunnels. 3 4 &
Explore the first tunnel to its completion f / \ /
before moving on to the next.

6 7 8

Orderof DFS: - - - - - - - - -

DFS

0
Depth-First Search is a way to explore \
connected nodes in a graph.
2

DFS goes deep before wide: fully

1
explore one path before trying any
others.

Analogy: In a cave with lots of tunnels. 3 4 &
Explore the first tunnel to its completion f / \ /
before moving on to the next.

6 7 8

Orderof DFS: 0 - - - - - - - -

DFS

0
Depth-First Search is a way to explore \
connected nodes in a graph.
2

DFS goes deep before wide: fully

1
explore one path before trying any
others.

Analogy: In a cave with lots of tunnels. 3 4 &
Explore the first tunnel to its completion f / \ /
before moving on to the next.

6 7 8

Orderof DFS: 01 - --- - - -

DFS

0
Depth-First Search is a way to explore \
connected nodes in a graph.
2

DFS goes deep before wide: fully

1
explore one path before trying any
others.

Analogy: In a cave with lots of tunnels. 3 4 &
Explore the first tunnel to its completion f / \ /
before moving on to the next.

6 7 8

Orderof DFS: 01 3 ---- - -

DFS

0
Depth-First Search is a way to explore \
connected nodes in a graph.
2

DFS goes deep before wide: fully

1
explore one path before trying any
others.

Analogy: In a cave with lots of tunnels. 3 4 &
Explore the first tunnel to its completion f / \ /
before moving on to the next.

6 7 8

Orderof DFS: 0136 - - - - -

DFS

0
Depth-First Search is a way to explore \
connected nodes in a graph.
2

DFS goes deep before wide: fully

1
explore one path before trying any
others.

Analogy: In a cave with lots of tunnels. 3 4 &
Explore the first tunnel to its completion f / \ /
before moving on to the next.

6 7 8

Orderof DFS: 0136 -- - - -

DFS

Depth-First Search is a way to explore
connected nodes in a graph.

DFS goes deep before wide: fully
explore one path before trying any
others.

Analogy: In a cave with lots of tunnels.

Explore the first tunnel to its completion
before moving on to the next.

e
7N
/N N\

Orderof DFS: 0136 7 - - - -

DFS

Depth-First Search is a way to explore
connected nodes in a graph.

DFS goes deep before wide: fully
explore one path before trying any
others.

Analogy: In a cave with lots of tunnels.

Explore the first tunnel to its completion
before moving on to the next.

e
7N
/N N\

Orderof DFS: 01367 - - - -

DFS

Depth-First Search is a way to explore
connected nodes in a graph.

DFS goes deep before wide: fully
explore one path before trying any
others.

Analogy: In a cave with lots of tunnels.

Explore the first tunnel to its completion
before moving on to the next.

e
7N
/N N\

Orderof DFS: 01367 - - - -

DFS

Depth-First Search is a way to explore
connected nodes in a graph.

DFS goes deep before wide: fully
explore one path before trying any
others.

Analogy: In a cave with lots of tunnels.

Explore the first tunnel to its completion
before moving on to the next.

e
7N
/N N\

Orderof DFS: 01367 4 - - -

DFS

Depth-First Search is a way to explore
connected nodes in a graph.

DFS goes deep before wide: fully
explore one path before trying any
others.

Analogy: In a cave with lots of tunnels.

Explore the first tunnel to its completion
before moving on to the next.

e
7N
/NSNS

Orderof DFS: 01367 48 - -

DFS

Depth-First Search is a way to explore
connected nodes in a graph.

DFS goes deep before wide: fully
explore one path before trying any
others.

Analogy: In a cave with lots of tunnels.

Explore the first tunnel to its completion
before moving on to the next.

e
7N
/N N\

Orderof DFS: 0136748 - -

DFS

Depth-First Search is a way to explore
connected nodes in a graph.

DFS goes deep before wide: fully
explore one path before trying any
others.

Analogy: In a cave with lots of tunnels.

Explore the first tunnel to its completion
before moving on to the next.

e
7N
/N N\

Orderof DFS: 0136748 - -

DFS

Depth-First Search is a way to explore
connected nodes in a graph.

DFS goes deep before wide: fully
explore one path before trying any
others.

Analogy: In a cave with lots of tunnels.

Explore the first tunnel to its completion
before moving on to the next.

e
7N
/N N\

Orderof DFS: 0136748 - -

DFS

Depth-First Search is a way to explore
connected nodes in a graph.

DFS goes deep before wide: fully
explore one path before trying any
others.

Analogy: In a cave with lots of tunnels.

Explore the first tunnel to its completion
before moving on to the next.

e
7N
/N N\

Orderof DFS: 0136748 2 -

DFS

Depth-First Search is a way to explore
connected nodes in a graph.

DFS goes deep before wide: fully
explore one path before trying any
others.

Analogy: In a cave with lots of tunnels.

Explore the first tunnel to its completion
before moving on to the next.

e
7N
/N N\

Orderof DFS: 013674825

DFS

Depth-First Search is a way to explore
connected nodes in a graph.

DFS goes deep before wide: fully
explore one path before trying any
others.

Analogy: In a cave with lots of tunnels.

Explore the first tunnel to its completion
before moving on to the next.

e
7N
/N N\

Orderof DFS: 013674825

DFS

Depth-First Search is a way to explore
connected nodes in a graph.

DFS goes deep before wide: fully
explore one path before trying any
others.

Analogy: In a cave with lots of tunnels.

Explore the first tunnel to its completion
before moving on to the next.

e
7N
/N N\

Orderof DFS: 013674825

DFS

Depth-First Search is a way to explore
connected nodes in a graph.

DFS goes deep before wide: fully
explore one path before trying any
others.

Analogy: In a cave with lots of tunnels.

Explore the first tunnel to its completion
before moving on to the next.

e
7N
/N N\

Orderof DFS: 013674825

BFS

0

Breadth-First Search is another way to \
explore connected nodes in a graph.

2
BFS goes wide before deep: explore -
closest nodes first. / \ \
Analogy: In the center of a crowd.
Greet everyone standing in the first

5
3 4
row. Then, green everyone in the f / \ /
second row, and so on.
6 7 8

OrderofBFS: - - - - - - - - -

BFS

0

Breadth-First Search is another way to \
explore connected nodes in a graph.

2
BFS goes wide before deep: explore -
closest nodes first. / \ \
Analogy: In the center of a crowd.
Greet everyone standing in the first

5
3 4
row. Then, green everyone in the f / \ /
second row, and so on.
6 7 8

OrderofBFS: 0 - - - - - - - -

BFS

0

Breadth-First Search is another way to \
explore connected nodes in a graph.

2
BFS goes wide before deep: explore :
closest nodes first. / \ \
Analogy: In the center of a crowd.
Greet everyone standing in the first

5
3 4
row. Then, green everyone in the f / \ /
second row, and so on.
6 7 8

OrderofBFS: 01 ------ -

BFS

0

Breadth-First Search is another way to \
explore connected nodes in a graph.

2
BFS goes wide before deep: explore L
closest nodes first. / \ \
Analogy: In the center of a crowd.
Greet everyone standing in the first

5
3 4
row. Then, green everyone in the f / \ /
second row, and so on.
6 7 8

OrderofBFS: 012 ----- -

BFS

0

Breadth-First Search is another way to \
explore connected nodes in a graph.

2
BFS goes wide before deep: explore L
closest nodes first. / \ \
Analogy: In the center of a crowd.
Greet everyone standing in the first

5
3 4
row. Then, green everyone in the f / \ /
second row, and so on.
6 7 8

OrderofBFS: 0123 --- - -

BFS

Breadth-First Search is another way to
explore connected nodes in a graph.

BFS goes wide before deep: explore
closest nodes first.

Analogy: In the center of a crowd.

Greet everyone standing in the first
row. Then, green everyone in the
second row, and so on.

e
7N
/N N\

OrderofBFS: 01234 - - - -

BFS

Breadth-First Search is another way to
explore connected nodes in a graph.

BFS goes wide before deep: explore
closest nodes first.

Analogy: In the center of a crowd.

Greet everyone standing in the first
row. Then, green everyone in the
second row, and so on.

e
7N
/N N\

OrderofBFS: 012345 - - -

BFS

Breadth-First Search is another way to
explore connected nodes in a graph.

BFS goes wide before deep: explore
closest nodes first.

Analogy: In the center of a crowd.

Greet everyone standing in the first
row. Then, green everyone in the
second row, and so on.

e
7N
/N N\

OrderofBFS: 012345 6 - -

BFS

Breadth-First Search is another way to
explore connected nodes in a graph.

BFS goes wide before deep: explore
closest nodes first.

Analogy: In the center of a crowd.

Greet everyone standing in the first
row. Then, green everyone in the
second row, and so on.

e
7N
/N N\

OrderofBFS: 01234567 -

BFS

Breadth-First Search is another way to
explore connected nodes in a graph.

BFS goes wide before deep: explore
closest nodes first.

Analogy: In the center of a crowd.

Greet everyone standing in the first
row. Then, green everyone in the
second row, and so on.

e
7N
/NSNS

OrderofBFS: 012345678

BFS

Breadth-First Search is another way to
explore connected nodes in a graph.

BFS goes wide before deep: explore
closest nodes first.

Analogy: In the center of a crowd.

Greet everyone standing in the first
row. Then, green everyone in the
second row, and so on.

e
7N
/N N\

OrderofBFS: 012345678

BFS

Breadth-First Search is another way to
explore connected nodes in a graph.

BFS goes wide before deep: explore
closest nodes first.

Analogy: In the center of a crowd.

Greet everyone standing in the first
row. Then, green everyone in the
second row, and so on.

Fun Fact: If edges are unweighted, then
BFS can find the shortest path from the
starting node to all nodes!

e
7N
/N N\

OrderofBFS: 012345678

Queue

BFS utilizes a queue.
A queue is essentially a normal line at the grocery store.
Two main operations:

1. Enter theline from the back: (Enqueue).
2. Exitthe line at the front: (Dequeue).

o)
!
»>
»

]

]
(4
(4
(V]
«\

4
¢
{
|
)

Front

Back

Queue Example

BFS utilizes a queue.

A queue is essentially a normal line at the grocery store.

Two main operations:

1. Enter theline from the back: (Enqueue).
2. Exitthe line at the front: (Dequeue).

Back

Front

enqueue(%)

enqueue(=)
dequeue()
enqueue (')
dequeue()
dequeue()

Queue Example

BFS utilizes a queue.

A queue is essentially a normal line at the grocery store.

Two main operations:

1. Enter theline from the back: (Enqueue).
2. Exitthe line at the front: (Dequeue).

Back

Front

enqueue(%)

enqueue(=)
dequeue()
enqueue (')
dequeue()
dequeue()

Queue Example

BFS utilizes a queue.

A queue is essentially a normal line at the grocery store.

Two main operations:

1. Enter theline from the back: (Enqueue).
2. Exitthe line at the front: (Dequeue).

Back

Qe
-

Front

enqueue(%)

enqueue(=)
dequeue()
enqueue (')
dequeue()
dequeue()

Queue Example

BFS utilizes a queue.

A queue is essentially a normal line at the grocery store.

Two main operations:

1. Enter theline from the back: (Enqueue).
2. Exitthe line at the front: (Dequeue).

Back

Qe
-

Front

enqueue(%)

enqueue(=)
dequeue()
enqueue (')
dequeue()
dequeue()

Queue Example

BFS utilizes a queue.

A queue is essentially a normal line at the grocery store.

Two main operations:

1. Enter theline from the back: (Enqueue).
2. Exitthe line at the front: (Dequeue).

Back

Qe 0,0
-

Front

enqueue(%)

enqueue(=)
dequeue()
enqueue (')
dequeue()
dequeue()

Queue Example

BFS utilizes a queue.

A queue is essentially a normal line at the grocery store.

Two main operations:

1. Enter theline from the back: (Enqueue).
2. Exitthe line at the front: (Dequeue).

Back

Qe 0,0
-

Front

enqueue(%)

enqueue (%)
dequeue()
enqueue (')
dequeue()
dequeue()

Queue Example

BFS utilizes a queue.
A queue is essentially a normal line at the grocery store.
Two main operations:

1. Enter theline from the back: (Enqueue).
2. Exitthe line at the front: (Dequeue).

Back

W | (90 %

Front

enqueue(%)

enqueue (%)
dequeue()
enqueue (')
dequeue()
dequeue()

Queue Example

BFS utilizes a queue.
A queue is essentially a normal line at the grocery store.
Two main operations:

1. Enter theline from the back: (Enqueue).
2. Exitthe line at the front: (Dequeue).

Back

W | (90 %

Front

enqueue(%)

enqueue(=)
dequeue()
enqueue (')
dequeue()
dequeue()

Queue Example

BFS utilizes a queue.

A queue is essentially a normal line at the grocery store.

Two main operations:

1. Enter theline from the back: (Enqueue).
2. Exitthe line at the front: (Dequeue).

Back

enqueue(%)

enqueue(=)
dequeue()
enqueue (')
dequeue()
dequeue()

Queue Example

BFS utilizes a queue.

A queue is essentially a normal line at the grocery store.

Two main operations:

1. Enter theline from the back: (Enqueue).
2. Exitthe line at the front: (Dequeue).

Back

enqueue(%)

enqueue(=)
dequeue()
enqueue (&)
dequeue()
dequeue()

Queue Example

BFS utilizes a queue.

A queue is essentially a normal line at the grocery store.

Two main operations:

1.
2.

Enter the line from the back: (Enqueue).
Exit the line at the front: (Dequeue).

{

Back

enqueue(%)

enqueue(=)
dequeue()
enqueue (&)
dequeue()
dequeue()

Queue Example

BFS utilizes a queue.

A queue is essentially a normal line at the grocery store.

Two main operations:

1.
2.

Enter the line from the back: (Enqueue).
Exit the line at the front: (Dequeue).

{

Back

enqueue(%)

enqueue(=)
dequeue()
enqueue (')
dequeue()
dequeue()

Queue Example

BFS utilizes a queue.

A queue is essentially a normal line at the grocery store.

Two main operations:

1.
2.

Enter the line from the back: (Enqueue).

Exit the line at the front: (Dequeue).

Front

Back

enqueue(%)

enqueue(=)
dequeue()
enqueue (')
dequeue()
dequeue()

Queue Example

BFS utilizes a queue.

A queue is essentially a normal line at the grocery store.

Two main operations:

1.
2.

Enter the line from the back: (Enqueue).

Exit the line at the front: (Dequeue).

Front

Back

enqueue(%)

enqueue(=)
dequeue()
enqueue (')
dequeue()
dequeue()

Queue Example

BFS utilizes a queue.

A queue is essentially a normal line at the grocery store.

Two main operations:

1. Enter theline from the back: (Enqueue).
2. Exitthe line at the front: (Dequeue).

Back

enqueue(%)

enqueue(=)
dequeue()
enqueue (')
dequeue()
dequeue()

Queue Example

BFS utilizes a queue.

A queue is essentially a normal line at the grocery store.

Two main operations:

1. Enter theline from the back: (Enqueue).
2. Exitthe line at the front: (Dequeue).

Back

enqueue(%)

enqueue(=)
dequeue()
enqueue (')
dequeue()
dequeue()

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

e Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A F
/ B F
cC — A —— G C F
\ D F
E D E F
\ / \ : F
B F G F
H F

Order of BFS: Queue:]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

e Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B F
cC —— A —— G C F
\ D F
E D E F
\ / \ : F
B F G F
H F

Order of BFS: Queue: [A]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

e Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B F
cC —— A —— G C F
\ D F
E D E F
\ / \ : F
B F G F
H F

Order of BFS: Queue: [A]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

° Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B F
c ————— A —— G C F
\ D F
E D E F
\ / \ : F
B F G F
H F

Order of BFS: A Queue:]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

e Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B F
c ————— A —— G C F
\ D F
E D E F
\ / \ : F
B F G F
H F

Order of BFS: A Queue:]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

e Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B F
¢ —— A —_—— G C T
\ D F
E D E F
\ / \ : F
B F G F
H F

Order of BFS: A Queue:]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

e Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B F
¢ —— A —_—— G C T
\ D F
E D E F
\ / \ : F
B F G F
H F

Order of BFS: A Queue: [C]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

e Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B F
. s Eaa— C T
\ D F
E D E F
\ / \ : F
B F G F
H F

Order of BFS: A Queue: [C]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

e Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B F
¢c —— A —_— G C T
\ D F
E D E F
\ / \ : F
B F G T
H F

Order of BFS: A Queue: [C]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

e Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B F
¢c —— A —_— G C T
\ D F
E D E F
\ / \ : F
B F G T
H F

Order of BFS: A Queue: [C, G]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

e Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B F
By A C T
\ D F
E D E F
\ / \ : F
B F G T
H F

Order of BFS: A Queue: [C, G]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

e Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B F
¢ —— A —— G C T
\ D F
E D E F
\ / \ : F
B F G T
H F

Order of BFS: A Queue: [C, G]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

° Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B F
¢ —— A — G C T
\ D F
E D E F
\ / \ : F
B F G T
H F

Order of BFS: A, C Queue: [G]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

e Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B F
C — " C T
\ D F
E D E F
\ / \ : F
B F G T
H F

Order of BFS: A, C Queue: [G]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

e Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B F
¢ —— A — G C T
\ D T
E D E F
\ / \ : F
B F G T
H F

Order of BFS: A, C Queue: [G]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

e Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B F
¢ —— A — G C T
\ D T
E D E F
\ / \ : F
B F G T
H F

Order of BFS: A, C Queue: [G, D]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

e Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B F
C — " C T
\ D T
E D E F
\ / \ : F
B F G T
H F

Order of BFS: A, C Queue: [G, D]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

e Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B F
¢ —— A — G C T
\ D T
E D E F
\ / \ : F
B F G T
H T

Order of BFS: A, C Queue: [G, D]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

e Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B F
¢ —— A — G C T
\ D T
E D E F
\ / \ : F
B F G T
H T

Order of BFS: A, C Queue: [G, D, H]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

e Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B F
C — " C T
\ D T
E D E F
\ / \ : F
B F G T
H T

Order of BFS: A,C Queue: [G, D, H]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

e Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B F
¢ —— A —— G C T
\ D T
E D E F
\ / \ : F
B F G T
H T

Order of BFS: A,C Queue: [G, D, H]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

° Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B F
¢ —— A —— G C T
\ D T
E D E F
\ / \ : F
B F G T
H T

Order of BFS: A,C, G Queue: [D, H]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

e Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B F
V" € C T
\ D T
E D E F
\ / \ : F
B F G T
H T

Order of BFS: A,C, G Queue: [D, H]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

e Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B F
¢ —— A —— G C T
\ D T
E D E F
\ / \ : T
B F G T
H T

Order of BFS: A,C, G Queue: [D, H]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

e Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B F
¢ —— A —— G C T
\ D T
E D E F
\ / \ : T
B F G T
H T

Order of BFS: A, C, G Queue: [D, H, F]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

e Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B F
V" € C T
\ D T
E D E F
\ / \ : T
B F G T
H T

Order of BFS: A, C, G Queue: [D, H, F]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

e Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B F
¢ —— A —— G C T
\ D T
E D E F
\ / \ : T
B F G T
H T

Order of BFS: A, C, G Queue: [D, H, F]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

e Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Which vertex gets visited next? What does the queue look like after visiting? e Enqueue n to Queue
Vertex marked[]
H A T
/ B F
¢ —— A —— G C T
\ D T
E D E F
\ / \ : T
B F G T
H T

Order of BFS: A, C, G Queue: [D, H, F]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

° Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B F
¢ —— A —— G C T
\ D T
E D E F
\ / \ : T
B F G T
H T

Order of BFS: A, C,G, D Queue: [H, F]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

e Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B F
. s 0 B C T
\ D T
E D E F
\ / \ : T
B F G T
H T

Order of BFS: A, C,G, D Queue: [H, F]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

e Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B T
¢ —— A —— G C T
\ D T
E D E F
\ / \ : T
B F G T
H T

Order of BFS: A, C,G, D Queue: [H, F]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

e Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B T
¢ —— A —— G C T
\ D T
E D E F
\ / \ : T
B F G T
H T

Order of BFS: A,C,G,D Queue: [H, F, B]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

e Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B T
. s 0 B C T
\ D T
E D E F
\ / \ : T
B F G T
H T

Order of BFS: A,C,G,D Queue: [H, F, B]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

e Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B T
¢ —— A —— G C T
\ D T
E D E F
\ / \ : T
B F G T
H T

Order of BFS: A,C,G,D Queue: [H, F, B]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

° Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B T
¢ —— A —— G C T
\ D T
E D E F
\ / \ : T
B F G T
H T

Order of BFS: A,C,G,D, H Queue: [F, B]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

e Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B T
. s 0 B C T
\ D T
E D E F
\ / \ : T
B F G T
H T

Order of BFS: A,C,G,D,H Queue: [F, B]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

e Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B T
¢ —— A —— G C T
\ D T
E D E F
\ / \ : T
B F G T
H T

Order of BFS: A,C,G,D,H Queue: [F, B]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

° Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B T
¢ —— A —— G C T
\ D T
E D E F
\ / \ : T
B F G T
H T

Order of BFS: A,C,G,D,H, F Queue: [B]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

e Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B T
. s 0 B C T
\ D T
E D E F
\ / \ : T
B F G T
H T

Order of BFS: A,C,G,D,H, F Queue: [B]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

e Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B T
¢ —— A —— G C T
\ D T
E D E F
\ / \ : T
B F G T
H T

Order of BFS: A,C,G,D,H, F Queue: [B]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

° Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B T
¢ —— A —— G C T
\ D T
E D E F
\ / \ : T
B F G T
H T

Order of BFS: A, C,G,D,H,F, B Queue:]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

e Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B T
. s 0 B C T
\ D T
E D E F
\ / \ : T
B F G T
H T

Order of BFS: A,C,G,D,H,F,B Queue:]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

e Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B T
¢ —— A —— G C T
\ D T
E D E T
\ / \ : T
B F G T
H T

Order of BFS: A,C,G,D,H,F,B Queue:]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

e Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B T
¢ —— A —— G C T
\ D T
E D E T
\ / \ : T
B F G T
H T

Order of BFS: A,C,G,D,H,F,B Queue: [E]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

e Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B T
. s 0 B C T
\ D T
E D E T
\ / \ : T
B F G T
H T

Order of BFS: A,C,G,D,H,F,B Queue: [E]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

e Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B T
¢ —— A —— G C T
\ D T
E D E T
\ / \ : T
B F G T
H T

Order of BFS: A,C,G,D,H,F,B Queue: [E]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

° Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B T
¢ —— A —— G C T
\ D T
E D E T
\ / \ : T
B F G T
H T

Order of BFS: A, C,G,D,H,F, B, E Queue:]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

e Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B T
. s 0 B C T
\ D T
E D E T
\ / \ : T
B F G T
H T

Order of BFS: A,C,G,D,H,F,B,E Queue:]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

e Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B T
¢ —— A —— G C T
\ D T
E D E T
\ / \ : T
B F G T
H T

Order of BFS: A,C,G,D,H,F,B,E Queue:]

Initialize Queue with Starting Vertex & Mark it
1. While Queue is not empty:

e Dequeue vertex v
B F S 2. For every unmarked neighbor n:
e Mark neighbor
Starting from A, write the order in which vertices are visited using BFS. e Enqueue n to Queue
Vertex marked[]
H A T
/ B T
¢ —— A —— G C T
\ D T
E D E T
\ / \ : T
B F G T
H T

Order of BFS: A,C,G,D,H,F,B,E Queue:]

