
JamCoders: Week 4 Day 1B
Graph Traversals: BFS Review

Welcome! We’ll start at 3:13PM!

DFS

3

1

4

0

87

2

5

6

Depth-First Search is a way to explore

connected nodes in a graph.

DFS goes deep before wide: fully

explore one path before trying any

others.

Analogy: In a cave with lots of tunnels.

Explore the first tunnel to its completion

before moving on to the next.

Order of DFS: - - - - - - - - -

DFS

3

1

4

0

87

2

5

6

Depth-First Search is a way to explore

connected nodes in a graph.

DFS goes deep before wide: fully

explore one path before trying any

others.

Analogy: In a cave with lots of tunnels.

Explore the first tunnel to its completion

before moving on to the next.

Order of DFS: 0 - - - - - - - -

DFS

3

1

4

0

87

2

5

6

Depth-First Search is a way to explore

connected nodes in a graph.

DFS goes deep before wide: fully

explore one path before trying any

others.

Analogy: In a cave with lots of tunnels.

Explore the first tunnel to its completion

before moving on to the next.

Order of DFS: 0 1 - - - - - - -

DFS

3

1

4

0

87

2

5

6

Depth-First Search is a way to explore

connected nodes in a graph.

DFS goes deep before wide: fully

explore one path before trying any

others.

Analogy: In a cave with lots of tunnels.

Explore the first tunnel to its completion

before moving on to the next.

Order of DFS: 0 1 3 - - - - - -

DFS

3

1

4

0

87

2

5

6

Depth-First Search is a way to explore

connected nodes in a graph.

DFS goes deep before wide: fully

explore one path before trying any

others.

Analogy: In a cave with lots of tunnels.

Explore the first tunnel to its completion

before moving on to the next.

Order of DFS: 0 1 3 6 - - - - -

DFS

3

1

4

0

87

2

5

6

Depth-First Search is a way to explore

connected nodes in a graph.

DFS goes deep before wide: fully

explore one path before trying any

others.

Analogy: In a cave with lots of tunnels.

Explore the first tunnel to its completion

before moving on to the next.

Order of DFS: 0 1 3 6 - - - - -

DFS

3

1

4

0

87

2

5

6

Depth-First Search is a way to explore

connected nodes in a graph.

DFS goes deep before wide: fully

explore one path before trying any

others.

Analogy: In a cave with lots of tunnels.

Explore the first tunnel to its completion

before moving on to the next.

Order of DFS: 0 1 3 6 7 - - - -

DFS

3

1

4

0

87

2

5

6

Depth-First Search is a way to explore

connected nodes in a graph.

DFS goes deep before wide: fully

explore one path before trying any

others.

Analogy: In a cave with lots of tunnels.

Explore the first tunnel to its completion

before moving on to the next.

Order of DFS: 0 1 3 6 7 - - - -

DFS

3

1

4

0

87

2

5

6

Depth-First Search is a way to explore

connected nodes in a graph.

DFS goes deep before wide: fully

explore one path before trying any

others.

Analogy: In a cave with lots of tunnels.

Explore the first tunnel to its completion

before moving on to the next.

Order of DFS: 0 1 3 6 7 - - - -

DFS

3

1

4

0

87

2

5

6

Depth-First Search is a way to explore

connected nodes in a graph.

DFS goes deep before wide: fully

explore one path before trying any

others.

Analogy: In a cave with lots of tunnels.

Explore the first tunnel to its completion

before moving on to the next.

Order of DFS: 0 1 3 6 7 4 - - -

DFS

3

1

4

0

87

2

5

6

Depth-First Search is a way to explore

connected nodes in a graph.

DFS goes deep before wide: fully

explore one path before trying any

others.

Analogy: In a cave with lots of tunnels.

Explore the first tunnel to its completion

before moving on to the next.

Order of DFS: 0 1 3 6 7 4 8 - -

DFS

3

1

4

0

87

2

5

6

Depth-First Search is a way to explore

connected nodes in a graph.

DFS goes deep before wide: fully

explore one path before trying any

others.

Analogy: In a cave with lots of tunnels.

Explore the first tunnel to its completion

before moving on to the next.

Order of DFS: 0 1 3 6 7 4 8 - -

DFS

3

1

4

0

87

2

5

6

Depth-First Search is a way to explore

connected nodes in a graph.

DFS goes deep before wide: fully

explore one path before trying any

others.

Analogy: In a cave with lots of tunnels.

Explore the first tunnel to its completion

before moving on to the next.

Order of DFS: 0 1 3 6 7 4 8 - -

DFS

3

1

4

0

87

2

5

6

Depth-First Search is a way to explore

connected nodes in a graph.

DFS goes deep before wide: fully

explore one path before trying any

others.

Analogy: In a cave with lots of tunnels.

Explore the first tunnel to its completion

before moving on to the next.

Order of DFS: 0 1 3 6 7 4 8 - -

DFS

3

1

4

0

87

2

5

6

Depth-First Search is a way to explore

connected nodes in a graph.

DFS goes deep before wide: fully

explore one path before trying any

others.

Analogy: In a cave with lots of tunnels.

Explore the first tunnel to its completion

before moving on to the next.

Order of DFS: 0 1 3 6 7 4 8 2 -

DFS

3

1

4

0

87

2

5

6

Depth-First Search is a way to explore

connected nodes in a graph.

DFS goes deep before wide: fully

explore one path before trying any

others.

Analogy: In a cave with lots of tunnels.

Explore the first tunnel to its completion

before moving on to the next.

Order of DFS: 0 1 3 6 7 4 8 2 5

DFS

3

1

4

0

87

2

5

6

Depth-First Search is a way to explore

connected nodes in a graph.

DFS goes deep before wide: fully

explore one path before trying any

others.

Analogy: In a cave with lots of tunnels.

Explore the first tunnel to its completion

before moving on to the next.

Order of DFS: 0 1 3 6 7 4 8 2 5

DFS

3

1

4

0

87

2

5

6

Depth-First Search is a way to explore

connected nodes in a graph.

DFS goes deep before wide: fully

explore one path before trying any

others.

Analogy: In a cave with lots of tunnels.

Explore the first tunnel to its completion

before moving on to the next.

Order of DFS: 0 1 3 6 7 4 8 2 5

DFS

3

1

4

0

87

2

5

6

Depth-First Search is a way to explore

connected nodes in a graph.

DFS goes deep before wide: fully

explore one path before trying any

others.

Analogy: In a cave with lots of tunnels.

Explore the first tunnel to its completion

before moving on to the next.

Order of DFS: 0 1 3 6 7 4 8 2 5

BFS

3

1

4

0

87

2

5

6

Breadth-First Search is another way to

explore connected nodes in a graph.

BFS goes wide before deep: explore

closest nodes first.

Analogy: In the center of a crowd.

Greet everyone standing in the first

row. Then, green everyone in the

second row, and so on.

Order of BFS: - - - - - - - - -

BFS

3

1

4

0

87

2

5

6

Breadth-First Search is another way to

explore connected nodes in a graph.

BFS goes wide before deep: explore

closest nodes first.

Analogy: In the center of a crowd.

Greet everyone standing in the first

row. Then, green everyone in the

second row, and so on.

Order of BFS: 0 - - - - - - - -

BFS

3

1

4

0

87

2

5

6

Breadth-First Search is another way to

explore connected nodes in a graph.

BFS goes wide before deep: explore

closest nodes first.

Analogy: In the center of a crowd.

Greet everyone standing in the first

row. Then, green everyone in the

second row, and so on.

Order of BFS: 0 1 - - - - - - -

BFS

3

1

4

0

87

2

5

6

Breadth-First Search is another way to

explore connected nodes in a graph.

BFS goes wide before deep: explore

closest nodes first.

Analogy: In the center of a crowd.

Greet everyone standing in the first

row. Then, green everyone in the

second row, and so on.

Order of BFS: 0 1 2 - - - - - -

BFS

3

1

4

0

87

2

5

6

Breadth-First Search is another way to

explore connected nodes in a graph.

BFS goes wide before deep: explore

closest nodes first.

Analogy: In the center of a crowd.

Greet everyone standing in the first

row. Then, green everyone in the

second row, and so on.

Order of BFS: 0 1 2 3 - - - - -

BFS

3

1

4

0

87

2

5

6

Breadth-First Search is another way to

explore connected nodes in a graph.

BFS goes wide before deep: explore

closest nodes first.

Analogy: In the center of a crowd.

Greet everyone standing in the first

row. Then, green everyone in the

second row, and so on.

Order of BFS: 0 1 2 3 4 - - - -

BFS

3

1

4

0

87

2

5

6

Breadth-First Search is another way to

explore connected nodes in a graph.

BFS goes wide before deep: explore

closest nodes first.

Analogy: In the center of a crowd.

Greet everyone standing in the first

row. Then, green everyone in the

second row, and so on.

Order of BFS: 0 1 2 3 4 5 - - -

BFS

3

1

4

0

87

2

5

6

Breadth-First Search is another way to

explore connected nodes in a graph.

BFS goes wide before deep: explore

closest nodes first.

Analogy: In the center of a crowd.

Greet everyone standing in the first

row. Then, green everyone in the

second row, and so on.

Order of BFS: 0 1 2 3 4 5 6 - -

BFS

3

1

4

0

87

2

5

6

Breadth-First Search is another way to

explore connected nodes in a graph.

BFS goes wide before deep: explore

closest nodes first.

Analogy: In the center of a crowd.

Greet everyone standing in the first

row. Then, green everyone in the

second row, and so on.

Order of BFS: 0 1 2 3 4 5 6 7 -

BFS

3

1

4

0

87

2

5

6

Breadth-First Search is another way to

explore connected nodes in a graph.

BFS goes wide before deep: explore

closest nodes first.

Analogy: In the center of a crowd.

Greet everyone standing in the first

row. Then, green everyone in the

second row, and so on.

Order of BFS: 0 1 2 3 4 5 6 7 8

BFS

3

1

4

0

87

2

5

6

Breadth-First Search is another way to

explore connected nodes in a graph.

BFS goes wide before deep: explore

closest nodes first.

Analogy: In the center of a crowd.

Greet everyone standing in the first

row. Then, green everyone in the

second row, and so on.

Order of BFS: 0 1 2 3 4 5 6 7 8

Breadth-First Search is another way to

explore connected nodes in a graph.

BFS goes wide before deep: explore

closest nodes first.

Analogy: In the center of a crowd.

Greet everyone standing in the first

row. Then, green everyone in the

second row, and so on.

Fun Fact: If edges are unweighted, then

BFS can find the shortest path from the

starting node to all nodes!

BFS

3

1

4

0

87

2

5

6

Order of BFS: 0 1 2 3 4 5 6 7 8

😴

Queue
BFS utilizes a queue.

A queue is essentially a normal line at the grocery store.

Two main operations:

1. Enter the line from the back: (Enqueue).
2. Exit the line at the front: (Dequeue).

Front

🤑 🎃 🤓 😑 😤
Back

Queue Example
enqueue(👽)
enqueue(🤖)
enqueue(😺)
dequeue()
enqueue(🤠)
dequeue()
dequeue()

BFS utilizes a queue.

A queue is essentially a normal line at the grocery store.

Two main operations:

1. Enter the line from the back: (Enqueue).
2. Exit the line at the front: (Dequeue).

Back

Front

Queue Example
enqueue(👽)
enqueue(🤖)
enqueue(😺)
dequeue()
enqueue(🤠)
dequeue()
dequeue()

BFS utilizes a queue.

A queue is essentially a normal line at the grocery store.

Two main operations:

1. Enter the line from the back: (Enqueue).
2. Exit the line at the front: (Dequeue).

Back

Front

👽

Queue Example
enqueue(👽)
enqueue(🤖)
enqueue(😺)
dequeue()
enqueue(🤠)
dequeue()
dequeue()

BFS utilizes a queue.

A queue is essentially a normal line at the grocery store.

Two main operations:

1. Enter the line from the back: (Enqueue).
2. Exit the line at the front: (Dequeue).

Back

Front

👽

Queue Example
enqueue(👽)
enqueue(🤖)
enqueue(😺)
dequeue()
enqueue(🤠)
dequeue()
dequeue()

BFS utilizes a queue.

A queue is essentially a normal line at the grocery store.

Two main operations:

1. Enter the line from the back: (Enqueue).
2. Exit the line at the front: (Dequeue).

Back

Front

👽

Queue Example
enqueue(👽)
enqueue(🤖)
enqueue(😺)
dequeue()
enqueue(🤠)
dequeue()
dequeue()

BFS utilizes a queue.

A queue is essentially a normal line at the grocery store.

Two main operations:

1. Enter the line from the back: (Enqueue).
2. Exit the line at the front: (Dequeue).

Back

Front

🤖

👽

Queue Example
enqueue(👽)
enqueue(🤖)
enqueue(😺)
dequeue()
enqueue(🤠)
dequeue()
dequeue()

BFS utilizes a queue.

A queue is essentially a normal line at the grocery store.

Two main operations:

1. Enter the line from the back: (Enqueue).
2. Exit the line at the front: (Dequeue).

Back

Front

🤖

👽

Queue Example
enqueue(👽)
enqueue(🤖)
enqueue(😺)
dequeue()
enqueue(🤠)
dequeue()
dequeue()

BFS utilizes a queue.

A queue is essentially a normal line at the grocery store.

Two main operations:

1. Enter the line from the back: (Enqueue).
2. Exit the line at the front: (Dequeue).

Back

Front

🤖 😺

👽

Queue Example
enqueue(👽)
enqueue(🤖)
enqueue(😺)
dequeue()
enqueue(🤠)
dequeue()
dequeue()

BFS utilizes a queue.

A queue is essentially a normal line at the grocery store.

Two main operations:

1. Enter the line from the back: (Enqueue).
2. Exit the line at the front: (Dequeue).

Back

Front

🤖 😺

🤖

Queue Example
enqueue(👽)
enqueue(🤖)
enqueue(😺)
dequeue()
enqueue(🤠)
dequeue()
dequeue()

BFS utilizes a queue.

A queue is essentially a normal line at the grocery store.

Two main operations:

1. Enter the line from the back: (Enqueue).
2. Exit the line at the front: (Dequeue).

Front

😺
Back

🤖

Queue Example
enqueue(👽)
enqueue(🤖)
enqueue(😺)
dequeue()
enqueue(🤠)
dequeue()
dequeue()

BFS utilizes a queue.

A queue is essentially a normal line at the grocery store.

Two main operations:

1. Enter the line from the back: (Enqueue).
2. Exit the line at the front: (Dequeue).

Front

😺
Back

🤖

Queue Example
enqueue(👽)
enqueue(🤖)
enqueue(😺)
dequeue()
enqueue(🤠)
dequeue()
dequeue()

BFS utilizes a queue.

A queue is essentially a normal line at the grocery store.

Two main operations:

1. Enter the line from the back: (Enqueue).
2. Exit the line at the front: (Dequeue).

Front

😺
Back

🤠

🤖

Queue Example
enqueue(👽)
enqueue(🤖)
enqueue(😺)
dequeue()
enqueue(🤠)
dequeue()
dequeue()

BFS utilizes a queue.

A queue is essentially a normal line at the grocery store.

Two main operations:

1. Enter the line from the back: (Enqueue).
2. Exit the line at the front: (Dequeue).

Front

😺
Back

🤠

😺

Queue Example
enqueue(👽)
enqueue(🤖)
enqueue(😺)
dequeue()
enqueue(🤠)
dequeue()
dequeue()

BFS utilizes a queue.

A queue is essentially a normal line at the grocery store.

Two main operations:

1. Enter the line from the back: (Enqueue).
2. Exit the line at the front: (Dequeue).

Front

🤠
Back

😺

Queue Example
enqueue(👽)
enqueue(🤖)
enqueue(😺)
dequeue()
enqueue(🤠)
dequeue()
dequeue()

BFS utilizes a queue.

A queue is essentially a normal line at the grocery store.

Two main operations:

1. Enter the line from the back: (Enqueue).
2. Exit the line at the front: (Dequeue).

Front

🤠
Back

🤠

Queue Example
enqueue(👽)
enqueue(🤖)
enqueue(😺)
dequeue()
enqueue(🤠)
dequeue()
dequeue()

BFS utilizes a queue.

A queue is essentially a normal line at the grocery store.

Two main operations:

1. Enter the line from the back: (Enqueue).
2. Exit the line at the front: (Dequeue).

Front

Back

🤠

Queue Example
enqueue(👽)
enqueue(🤖)
enqueue(😺)
dequeue()
enqueue(🤠)
dequeue()
dequeue()

BFS utilizes a queue.

A queue is essentially a normal line at the grocery store.

Two main operations:

1. Enter the line from the back: (Enqueue).
2. Exit the line at the front: (Dequeue).

Front

Back

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

Order of BFS: Queue: []

Vertex

A

B

C

D

E

F

G

H

marked[]

F

F

F

F

F

F

F

F

1. While Queue is not empty:
● Dequeue vertex v

2. For every unmarked neighbor n:
● Mark neighbor
● Enqueue n to Queue

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS:

2. For every unmarked neighbor n:

Queue: [A]

● Mark neighbor
● Enqueue n to Queue

Initialize Queue with Starting Vertex & Mark it

Vertex

A

B

C

D

E

F

G

H

marked[]

T

F

F

F

F

F

F

F

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS:

2. For every unmarked neighbor n:

Queue: [A]

● Mark neighbor
● Enqueue n to Queue

Initialize Queue with Starting Vertex & Mark it

Vertex

A

B

C

D

E

F

G

H

marked[]

T

F

F

F

F

F

F

F

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A

2. For every unmarked neighbor n:

Queue: []

● Mark neighbor
● Enqueue n to Queue

Initialize Queue with Starting Vertex & Mark it

Vertex

A

B

C

D

E

F

G

H

marked[]

T

F

F

F

F

F

F

F

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A

2. For every unmarked neighbor n:

Queue: []

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

F

F

F

F

F

F

F

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A

2. For every unmarked neighbor n:

Queue: []

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

F

T

F

F

F

F

F

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A

2. For every unmarked neighbor n:

Queue: [C]

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

F

T

F

F

F

F

F

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A

2. For every unmarked neighbor n:

Queue: [C]

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

F

T

F

F

F

F

F

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A

2. For every unmarked neighbor n:

Queue: [C]

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

F

T

F

F

F

T

F

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A

2. For every unmarked neighbor n:

Queue: [C, G]

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

F

T

F

F

F

T

F

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A

2. For every unmarked neighbor n:

Queue: [C, G]

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

F

T

F

F

F

T

F

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A

2. For every unmarked neighbor n:

Queue: [C, G]

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

F

T

F

F

F

T

F

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A, C

2. For every unmarked neighbor n:

Queue: [G]

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

F

T

F

F

F

T

F

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A, C

2. For every unmarked neighbor n:

Queue: [G]

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

F

T

F

F

F

T

F

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A, C

2. For every unmarked neighbor n:

Queue: [G]

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

F

T

T

F

F

T

F

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A, C

2. For every unmarked neighbor n:

Queue: [G, D]

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

F

T

T

F

F

T

F

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A, C

2. For every unmarked neighbor n:

Queue: [G, D]

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

F

T

T

F

F

T

F

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A, C

2. For every unmarked neighbor n:

Queue: [G, D]

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

F

T

T

F

F

T

T

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A, C

2. For every unmarked neighbor n:

Queue: [G, D, H]

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

F

T

T

F

F

T

T

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A, C

2. For every unmarked neighbor n:

Queue: [G, D, H]

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

F

T

T

F

F

T

T

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A, C

2. For every unmarked neighbor n:

Queue: [G, D, H]

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

F

T

T

F

F

T

T

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A, C, G

2. For every unmarked neighbor n:

Queue: [D, H]

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

F

T

T

F

F

T

T

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A, C, G

2. For every unmarked neighbor n:

Queue: [D, H]

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

F

T

T

F

F

T

T

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A, C, G

2. For every unmarked neighbor n:

Queue: [D, H]

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

F

T

T

F

T

T

T

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A, C, G

2. For every unmarked neighbor n:

Queue: [D, H, F]

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

F

T

T

F

T

T

T

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A, C, G

2. For every unmarked neighbor n:

Queue: [D, H, F]

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

F

T

T

F

T

T

T

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A, C, G

2. For every unmarked neighbor n:

Queue: [D, H, F]

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

F

T

T

F

T

T

T

Initialize Queue with Starting Vertex & Mark it

BFS

H

Which vertex gets visited next? What does the queue look like after visiting?

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A, C, G

2. For every unmarked neighbor n:

Queue: [D, H, F]

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

F

T

T

F

T

T

T

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A, C, G, D

2. For every unmarked neighbor n:

Queue: [H, F]

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

F

T

T

F

T

T

T

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A, C, G, D

2. For every unmarked neighbor n:

Queue: [H, F]

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

F

T

T

F

T

T

T

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A, C, G, D

2. For every unmarked neighbor n:

Queue: [H, F]

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

T

T

T

F

T

T

T

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A, C, G, D

2. For every unmarked neighbor n:

Queue: [H, F, B]

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

T

T

T

F

T

T

T

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A, C, G, D

2. For every unmarked neighbor n:

Queue: [H, F, B]

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

T

T

T

F

T

T

T

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A, C, G, D

2. For every unmarked neighbor n:

Queue: [H, F, B]

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

T

T

T

F

T

T

T

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A, C, G, D, H

2. For every unmarked neighbor n:

Queue: [F, B]

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

T

T

T

F

T

T

T

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A, C, G, D, H

2. For every unmarked neighbor n:

Queue: [F, B]

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

T

T

T

F

T

T

T

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A, C, G, D, H

2. For every unmarked neighbor n:

Queue: [F, B]

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

T

T

T

F

T

T

T

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A, C, G, D, H, F

2. For every unmarked neighbor n:

Queue: [B]

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

T

T

T

F

T

T

T

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A, C, G, D, H, F

2. For every unmarked neighbor n:

Queue: [B]

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

T

T

T

F

T

T

T

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A, C, G, D, H, F

2. For every unmarked neighbor n:

Queue: [B]

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

T

T

T

F

T

T

T

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A, C, G, D, H, F, B

2. For every unmarked neighbor n:

Queue: []

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

T

T

T

F

T

T

T

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A, C, G, D, H, F, B

2. For every unmarked neighbor n:

Queue: []

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

T

T

T

F

T

T

T

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A, C, G, D, H, F, B

2. For every unmarked neighbor n:

Queue: []

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

T

T

T

T

T

T

T

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A, C, G, D, H, F, B

2. For every unmarked neighbor n:

Queue: [E]

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

T

T

T

T

T

T

T

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A, C, G, D, H, F, B

2. For every unmarked neighbor n:

Queue: [E]

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

T

T

T

T

T

T

T

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A, C, G, D, H, F, B

2. For every unmarked neighbor n:

Queue: [E]

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

T

T

T

T

T

T

T

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A, C, G, D, H, F, B, E

2. For every unmarked neighbor n:

Queue: []

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

T

T

T

T

T

T

T

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A, C, G, D, H, F, B, E

2. For every unmarked neighbor n:

Queue: []

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

T

T

T

T

T

T

T

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A, C, G, D, H, F, B, E

2. For every unmarked neighbor n:

Queue: []

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

T

T

T

T

T

T

T

Initialize Queue with Starting Vertex & Mark it

BFS

H

Starting from A, write the order in which vertices are visited using BFS.

C

E D

A

FB

G

1. While Queue is not empty:
● Dequeue vertex v

Order of BFS: A, C, G, D, H, F, B, E

2. For every unmarked neighbor n:

Queue: []

● Mark neighbor
● Enqueue n to Queue

Vertex

A

B

C

D

E

F

G

H

marked[]

T

T

T

T

T

T

T

T

