

Circuits!!!!

In JamCoders, so far: Software

Today: Hardware!

About Safety: Arduinos can't hurt you.

Electronic Numerical Integrator and Computer (ENIAC)

- Invented 1946
- University of Pennsylvania (U Penn)

Electronic Numerical Integrator and Computer (ENIAC): 5000 calculations per second

M3Ultra: 36 trillion operations per second

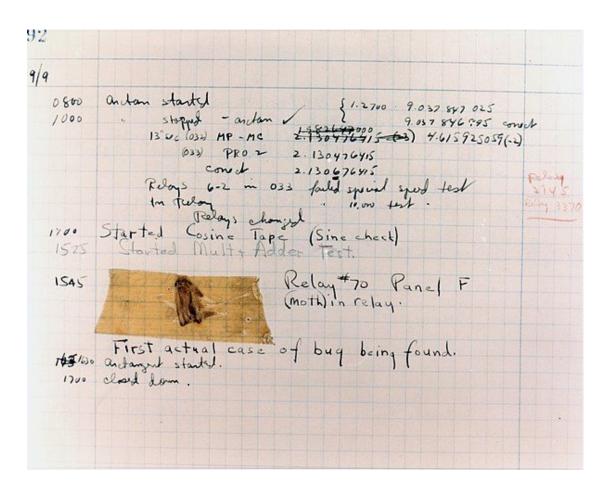
Who is Grace Hopper?

Grace Hopper: Born 1906

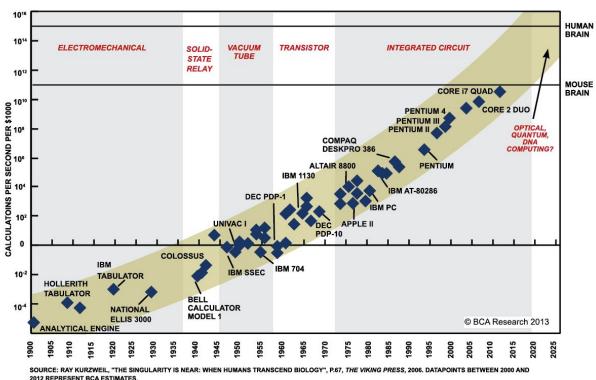
Early computer scientist

Navy admiral

Known for:


- Inventing one of the first linkers
- Theory of machine-independent programming languages

What is debugging?


A bug died inside Grace Hopper's computer and impeded the relay operations

The term "debugging" was born

Debugging is still difficult, but luckily doesn't involve real bugs

Today, computers are faster, store more data, and take up less space.

2012 REPRESENT BCA ESTIMATES.

Central Procesing Unit (CPU)

Control Unit

Arithmetic Logic Unit (ALU)

Memory Unit (RAM)

```
0 section
                                          ; declare the .text section
                  .text
                                          ; has to be declared for the linker (ld)
 1 global
                 start
                                          ; entry point for _start
 2 _start:
                                          ; "invoke" the len of the message
      mov edx, len
                                          ; "invoke" the message itself
      mov ecx, msg
                                         ; set the file descriptor (fd) to stdout
      mov ebx, 1
      mov eax, 4
                                         ; system call for "write"
      int 0x80
                                         ; call the kernel
      mov eax, 1
                                         ; system call for "exit"
                                         ; call the kernel
      int 0x80
                                         ; here you declare the data
14 section
                  .data
                 db "Hello world!", 0xa ; the actual message to use
                 equ $ -msg
                                         ; get the size of the message
      len
```

- Get data faster.
 - Access to data is limited by distance (speed of light).
 - Multiple tiers of cache on a chip.

- Get data faster.
 - Access to data is limited by distance (speed of light).
 - Multiple tiers of cache on a chip.

Computer	Human Analogy

- Get data faster.
 - Access to data is limited by distance (speed of light).
 - Multiple tiers of cache on a chip.

Computer	Human Analogy
L1 Cache: 1ns	

- Get data faster.
 - Access to data is limited by distance (speed of light).
 - Multiple tiers of cache on a chip.

Computer	Human Analogy
L1 Cache: 1ns	0.25 seconds

- Get data faster.
 - Access to data is limited by distance (speed of light).
 - Multiple tiers of cache on a chip.

Computer	Human Analogy
L1 Cache: 1ns	0.25 seconds (fact just learned)

- Get data faster.
 - Access to data is limited by distance (speed of light).
 - Multiple tiers of cache on a chip.

Computer	Human Analogy
L1 Cache: 1ns	0.25 seconds (fact just learned)
L3 Cache: 16ns	

- Get data faster.
 - Access to data is limited by distance (speed of light).
 - Multiple tiers of cache on a chip.

Computer	Human Analogy
L1 Cache: 1ns	0.25 seconds (fact just learned)
L3 Cache: 16ns	4 seconds (fact from a month ago)

- Get data faster.
 - Access to data is limited by distance (speed of light).
 - Multiple tiers of cache on a chip.

Computer	Human Analogy
L1 Cache: 1ns	0.25 seconds (fact just learned)
L3 Cache: 16ns	4 seconds (fact from a month ago)
RAM: 100ns	

- Get data faster.
 - Access to data is limited by distance (speed of light).
 - Multiple tiers of cache on a chip.

Computer	Human Analogy
L1 Cache: 1ns	0.25 seconds (fact just learned)
L3 Cache: 16ns	4 seconds (fact from a month ago)
RAM: 100ns	25 seconds (look in a book on your desk)

- Get data faster.
 - Access to data is limited by distance (speed of light).
 - Multiple tiers of cache on a chip.

Computer	Human Analogy
L1 Cache: 1ns	0.25 seconds (fact just learned)
L3 Cache: 16ns	4 seconds (fact from a month ago)
RAM: 100ns	25 seconds (look in a book on your desk)
SSD: 100,000ns (100us)	

- Get data faster.
 - Access to data is limited by distance (speed of light).
 - Multiple tiers of cache on a chip.

Computer	Human Analogy
L1 Cache: 1ns	0.25 seconds (fact just learned)
L3 Cache: 16ns	4 seconds (fact from a month ago)
RAM: 100ns	25 seconds (look in a book on your desk)
SSD: 100,000ns (100us)	~7 hours (go to the library today)

- Get data faster.
 - Access to data is limited by distance (speed of light).
 - Multiple tiers of cache on a chip.

Computer	Human Analogy
L1 Cache: 1ns	0.25 seconds (fact just learned)
L3 Cache: 16ns	4 seconds (fact from a month ago)
RAM: 100ns	25 seconds (look in a book on your desk)
SSD: 100,000ns (100us)	~7 hours (go to the library today)
Disk: 10,000,000ns (10,000us, 10ms)	

- Get data faster.
 - Access to data is limited by distance (speed of light).
 - Multiple tiers of cache on a chip.

Computer	Human Analogy
L1 Cache: 1ns	0.25 seconds (fact just learned)
L3 Cache: 16ns	4 seconds (fact from a month ago)
RAM: 100ns	25 seconds (look in a book on your desk)
SSD: 100,000ns (100us)	~7 hours (go to the library today)
Disk: 10,000,000ns (10,000us, 10ms)	~29 days (Jamcoders!)

- Get data faster.
 - Access to data is limited by distance (speed of light).
 - Multiple tiers of cache on a chip.

Computer	Human Analogy
L1 Cache: 1ns	0.25 seconds (fact just learned)
L3 Cache: 16ns	4 seconds (fact from a month ago)
RAM: 100ns	25 seconds (look in a book on your desk)
SSD: 100,000ns (100us)	~7 hours (go to the library today)
Disk: 10,000,000ns (10,000us, 10ms)	~29 days (Jamcoders!)
Network (JAM ↔ NYC): 70,000,000ns (70,000us, 70ms)	

- Get data faster.
 - Access to data is limited by distance (speed of light).
 - Multiple tiers of cache on a chip.

Computer	Human Analogy
L1 Cache: 1ns	0.25 seconds (fact just learned)
L3 Cache: 16ns	4 seconds (fact from a month ago)
RAM: 100ns	25 seconds (look in a book on your desk)
SSD: 100,000ns (100us)	~7 hours (go to the library today)
Disk: 10,000,000ns (10,000us, 10ms)	~29 days (Jamcoders!)
Network (JAM ↔ NYC): 70,000,000ns (70,000us, 70ms)	~202 days (a year of school)

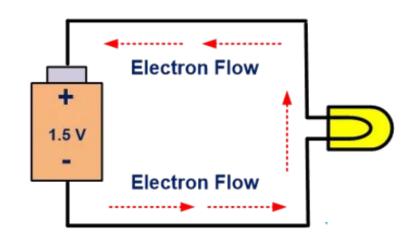
Why make them faster?

EVERYTHING IN THIS PHOTO IS NOW IN YOUR POCKET

What is voltage?

Electric potential difference per unit charge between two points in a circuit's electric

field.



- The battery supplies voltage, causing an energy imbalance to exist between the + and -
- This causes current (electrons or ions) to flow

What is current? Resistance?

Electrical current is a stream of charged particles, such as electrons or ions, moving through an electrical conductor.

Resistance restricts the flow of current.

Ohm's Law

Ohm's Law captures the relationship between:

- Current (I)
- Voltage (V)
- Resistance (R)

V = IR

Circuit Components

- Wires
- Resistors
- Capacitors
- TransistorsSwitches
- OR, AND, NOR, and NOT gates
- The list goes on...

Wires

I know you know what wires are, here are some photos of the ones we're using:

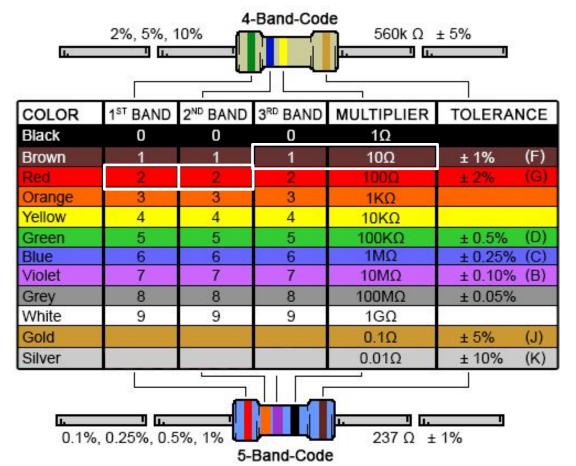
The metal ends enter the breadboard and Arduino pin holes

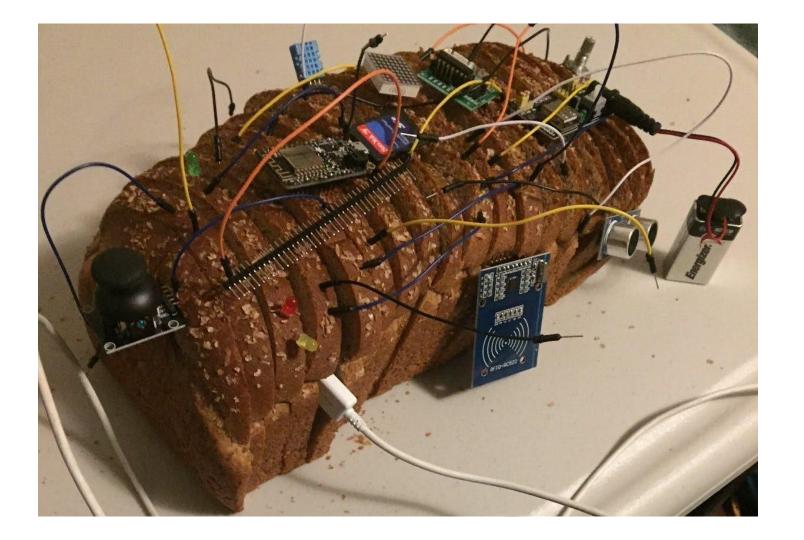
LED Lightbulbs

Resistors

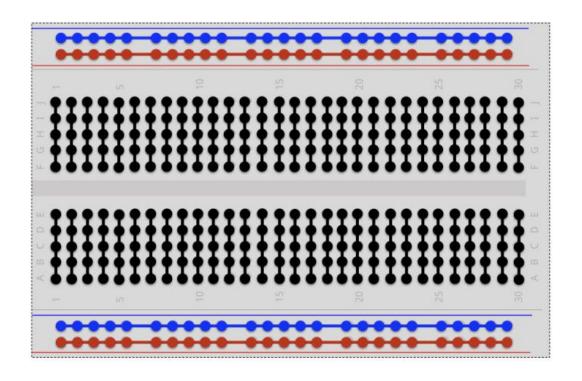
Resistors provide resistance to electrical current.

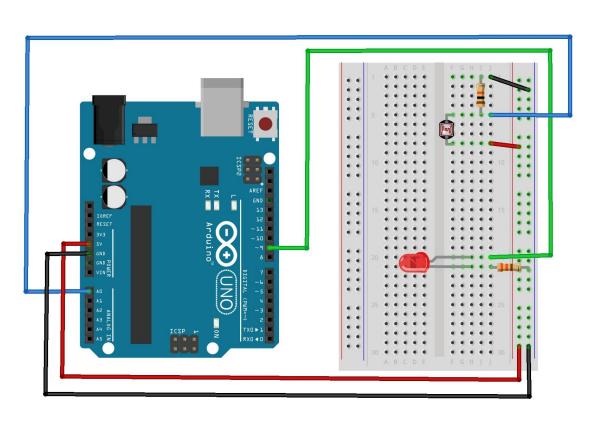
They are often needed to regulate the current and voltage in a circuit.

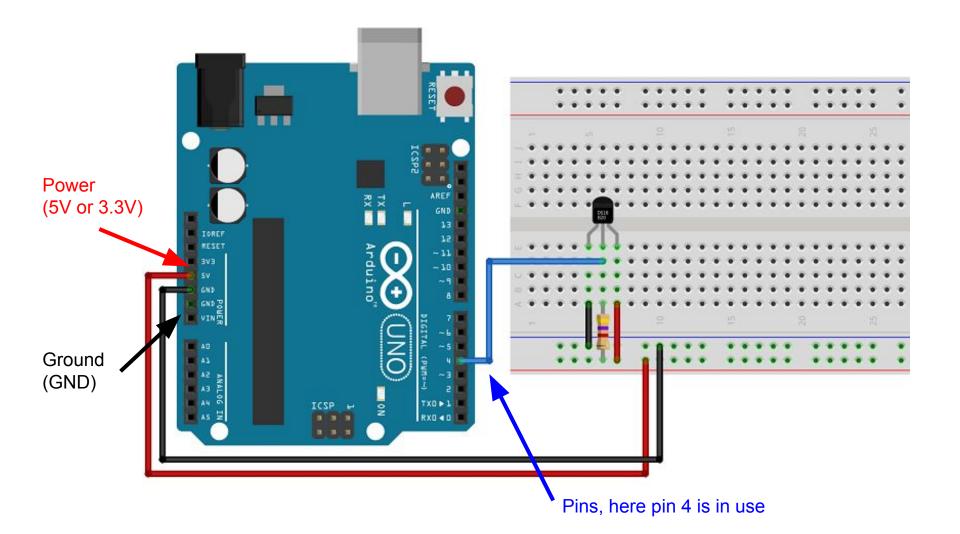

(You'll be using ~220 Ohms)



Resistors

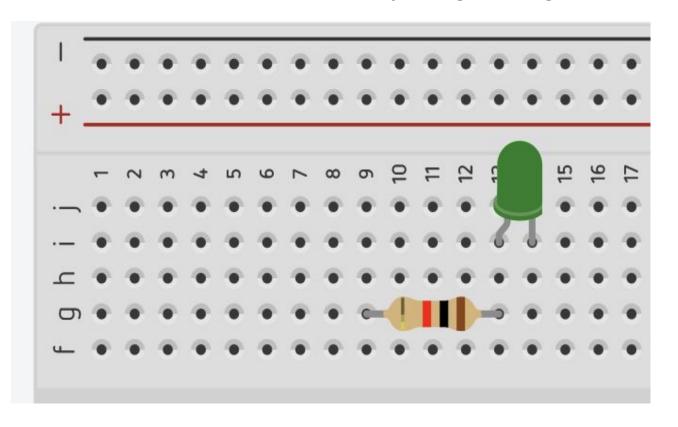

You'll be using ~220 Ohms


Breadboard


Breadboards are used to organize and connect circuit elements.

Arduino Chip

Breadboard


Are the resistor and the lightbulb connected?

What about now? Is there anything wrong with this connection?

What about now? Is there anything wrong with this connection?

Now it's your turn to make some circuits!

Group 1: Shechanyah, Kalani, Joelle, Ayeisha, Zyeka

Group 2: Nyla, Kayleigh, Austin, Sean, Rebekah, Oksana

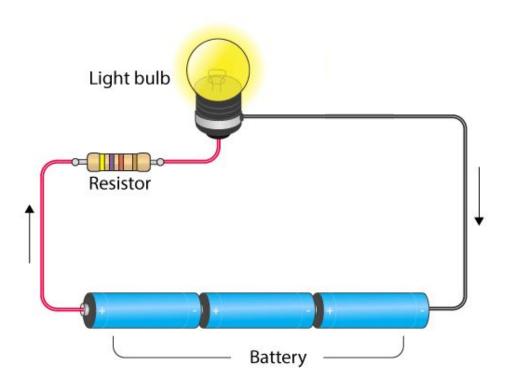
Group 3: Aiden, Naandi, Jozanne, Yemesi, Gisele

Group 4: Antwaun, Alyssa, Rishi, Kairo-Alexis, Tariq

Group 5: Robert, Chenelle, Daniel, Tessanne, Brianna

Group 6: Aprille, Oscar, Kamali, Kara-Lee, Kayla

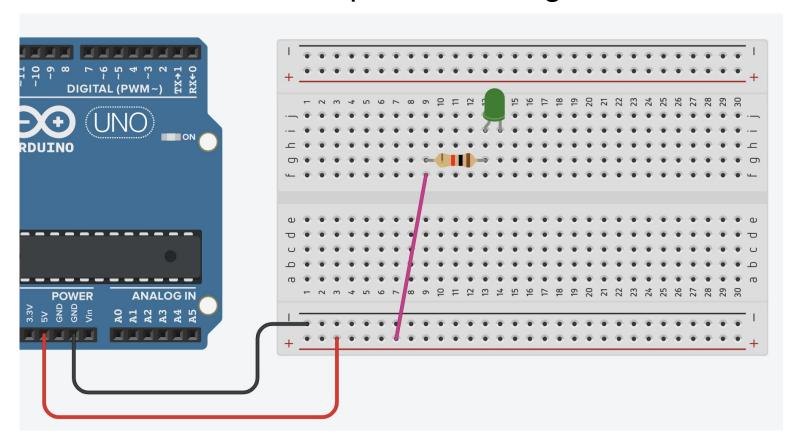
Group 7: Jadon, Aneika, Kejaaun, Jemila, Tiandra, Damir

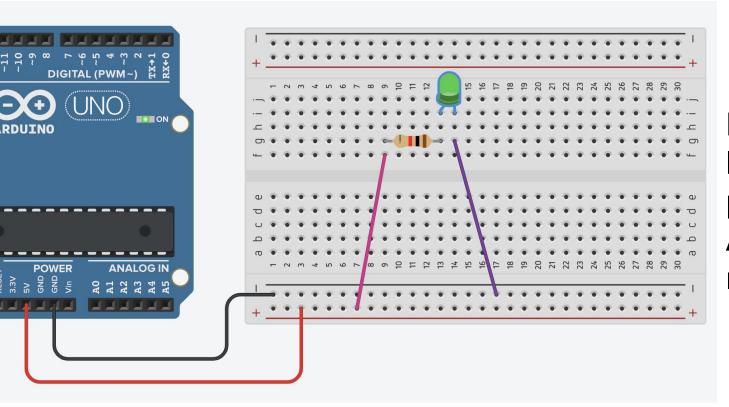

Group 8: Kiana, Zephan, Janic, Orett, Larissa, Cavier

Group 9: Neveno, Malique, Daniela, Gabrielle, Richaiya, Raheem

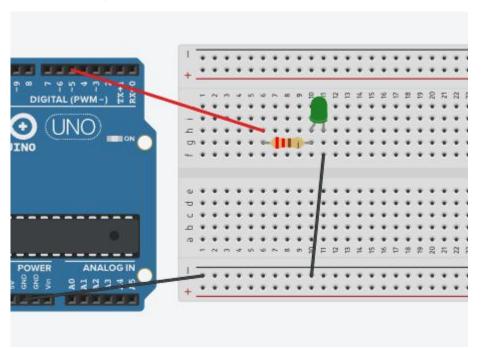
What's in Your Kit? → Call a TA if you're missing things

- 1 Arduino Uno
- 🔹 1 Single-Colour LED 💡
- 1 RGB LED
- 3 Resistors (100-330 Ohms)
- 1 Breadboard >>
- Wiressss


Let's Make a Simple Light Circuit!


Let's connect our circuit board to +/- voltage:

Now let's connect the positive voltage to the resistor:


Now let's connect the negative voltage to the lightbulb:

Now, raise your hand and I will plug in the Arduino microcontroller!

But what if I want it to blink?

Giving our Circuit Personality

Move your positive voltage to pin 5 on the Arduino and open the following file and run it:

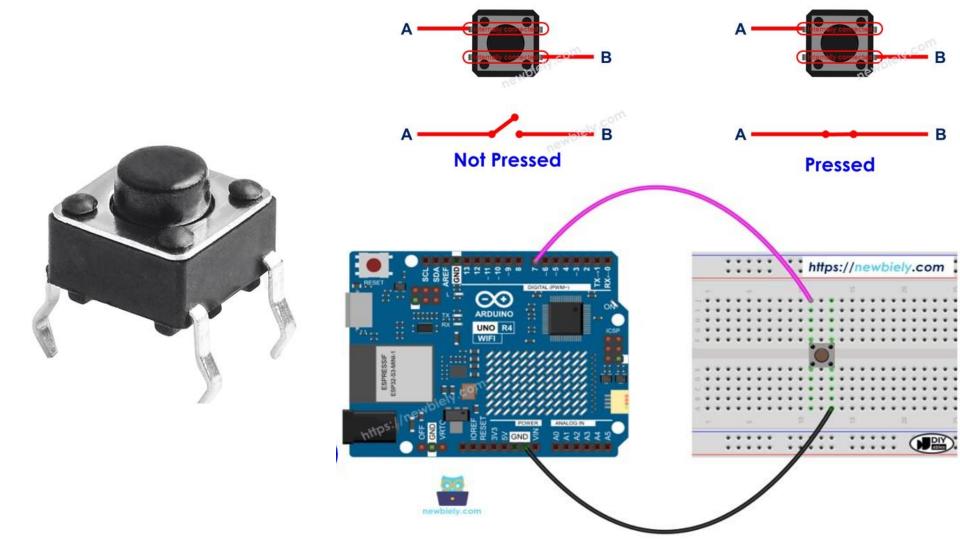
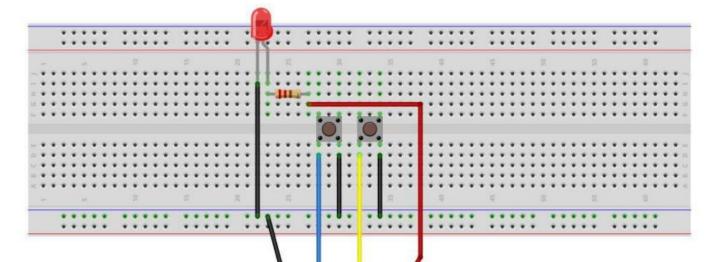
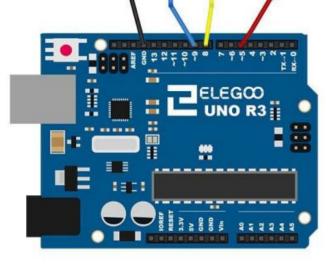

blink_led.ino

Image of Arduino ui

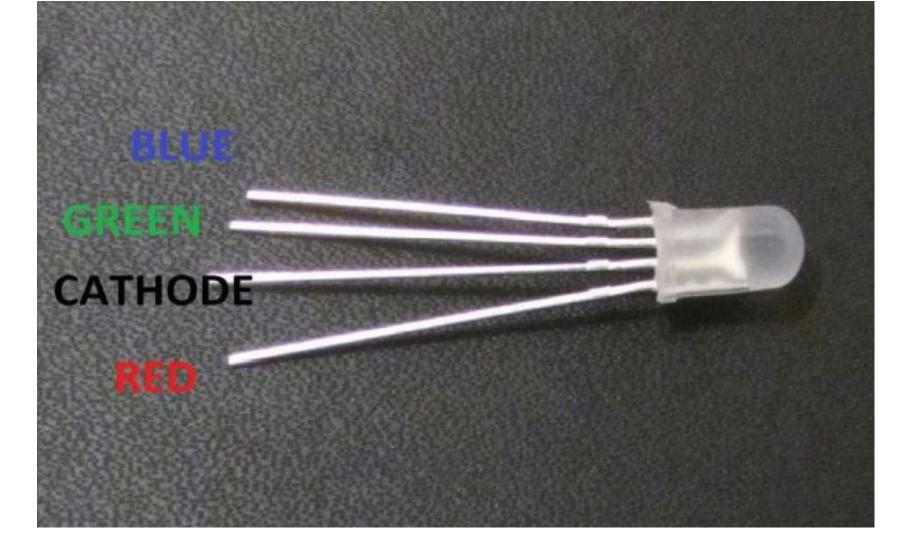
- connect to board

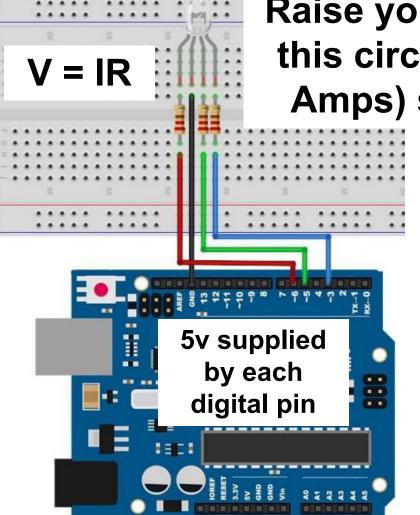

Arduino chips run code which controls the voltage and current applied via wires into our circuit

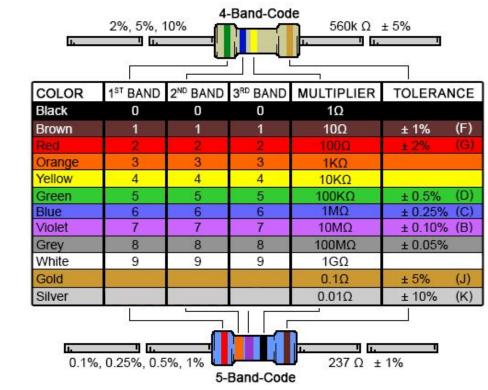
But what if I want to make a light switch?


Try to make a circuit that turns an LED on and off with a button.

Try it on your own first, but don't be afraid to ask for help!


Open and run the following file when finished:


LED_buttons.ino

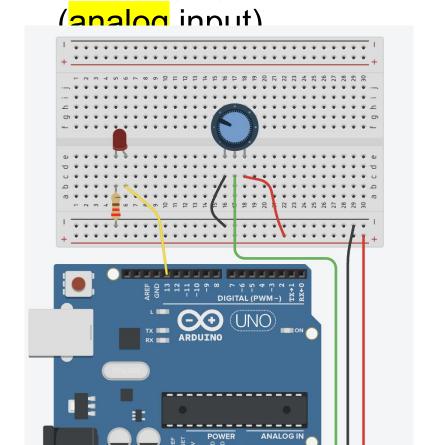

Make sure to get the pin numbers right!

But what if I want to have a colorful light?

Raise your hand when you have built this circuit and know the current (in Amps) supplied to each RGB pin!!

Now put it together!

Make a circuit that uses TWO buttons to control the colour of an RGB LED.


Use pins 8 and 9 for the buttons RED -> 3, BLUE -> 6, GREEN -> 5 Remember your resistors!!!!

Call a TA when you're done!

Challenge Problem! Diming light with potentiometer

Open led_dim.ino

