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Cancer: Earlier Detection + Reduced Overtreatment

Who do we screen? When do we screen? Does our algorithm work?




Screening Guidelines

e Risk scores determine who gets supplemental screening or chemoprevention
e Risk is based on your personal factors and family medical history

Patient Current Guidelines

Image Credit: MedAl #97: Al for Personalized Cancer Screening | Adam Yala



https://www.youtube.com/watch?v=X5fW4aMERmU

Can we do better?

Early Detection

Reduce Overtreatment

Screen constantly

Never screen




Predict Cancer Risk Create personalized screening policy

Patient Personalized Guideline

Image Credit: MedAl #97: Al for Personalized Cancer Screening | Adam Yala


https://www.youtube.com/watch?v=X5fW4aMERmU

How do we do this?

1. Collaborate with doctors
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How do we do this?

Collaborate with doctors
Look at lots of past data
Create a model
While model != good:
improve(model, data, doctors, computer scientists, lots of time)
5. Test on data the model has never seen
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How do we do this?

Collaborate with doctors
Look at lots of past data
Create a model
While model != good:
improve(model, data, doctors, computer scientists, lots of time)
Test on data the model has never seen
Deploy it in the clinic!
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B Tyrer-Cuzick (Prior State of Art)
B MIRAI (Ours - New Result)

MGH Test Set

Novant Emory Maccabi-Assuta Karolinska CGMH Barretos

Image Credit: MedAl #97: Al for Personalized Cancer Screening | Adam Yala



https://www.youtube.com/watch?v=X5fW4aMERmU

What else can you do?



Make Screening Cheaper, Less Invasive for Patients
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Image Credit: Feasibility of Simulated Contrast-enhanced Breast MRI for Imaging Malignant Masses Using Deep Learnin



https://pmc.ncbi.nlm.nih.gov/articles/PMC9974793/

Help Doctors Help Patients




New Computational Methods

2500

2000

1500

1000

Train time (in 8xH100 hours)

500

=@~ VisionTransformer
= FosterViT
ConvNext
=#8- Swin
-~ LongViT
== MambaVision
- Atlas (ours)

7.6x

BBX

o
1024 2048 3072

Input resolution (in px)

4096

scale-2 scale-3

Q FEEEHHEY

‘ Cross-Attention Self-Attention

top-down multi-scale communication

scale-1 scale-2 scale-3

s QEEEEY

Cross-Attention

Cross-Attention

[] 1

bottom-up multi-scale communication

Image credit: [2503.12355] Atlas: Multi-Scale Attention Improves Long Context Image Modeling



https://arxiv.org/abs/2503.12355

Help Clinical Researchers Access Computational Tools

‘ Label subset of

D\ reports and split
- into train, dev, test
Create prompts

Are the following types of cancer
included in the report? Possible
diagnoses include: du
in situ, invasive ductal carcinoma,
invasive lobular carcinoma, or
adenocarcinoma.

ocis _|iocluc  [apc |
1 0 1 0

convert ground parse the LLM
truth to the response to the
intended LLM predicted labels in
{(*DC

tal carcinoma

response tabular form

My answer is: IS” s “yes”,
“IDC”: “no”, “ILC”: “yes”,
“ADC”: “no”}.

Training data
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Are the following types of
cancer included in the report?

N My answer is : {“DCIS”:
“yes”, “IDC”: “no”, “ILC”:

“yes”, “ADC”: “no”}.

N My answer is: : {“DCIS”:
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“no”, “ADC”: “yes”}.
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loss
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Exact match scores on held-
out test set

Outcome ne-tuned
characte! Llama 3.1 score

Anatomic site 99.5

Diagnosis 90.6

Laterality-specific 97.8
subtyping (left)

Laterality-specific 92.6
subtyping (right)

Inference on all unlabeled reports
at the institution

60k+ automated extractions
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Ing!

Thanks for listen




